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ochastic monotony signature and biomedical applications
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ntroduction

In many biomedical applications, semi-quantitative or
litative variables are observed, which are valued on a

all number of levels (typically the integers from 0 to 10),

but are comparable through a strategy of monotony
testing. If only the succession of intervals of monotony
of the function, between the times of observation (either
discrete or continuous), is important for comparing these
variables, we only consider the sequence of signs of these
intervals (‘‘+1’’, if the function is increasing or constant, and
‘‘�1’’ if the function is decreasing) called the stochastic
monotony signature, and then we calculate the probability
that a sequence of signs is similar or not to another
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A B S T R A C T

We introduce a new concept, the stochastic monotony signature of a function, made of the

sequence of the signs that indicate if the function is increasing or constant (sign +), or

decreasing (sign �). If the function results from the averaging of successive observations

with errors, the monotony sign is a random binary variable, whose density is studied under

two hypotheses for the distribution of errors: uniform and Gaussian. Then, we describe a

simple statistical test allowing the comparison between the monotony signatures of two

functions (e.g., one observed and the other as reference) and we apply the test to four

biomedical examples, coming from genetics, psychology, gerontology, and morphogenesis.

� 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous introduisons un nouveau concept, la signature de monotonie aléatoire d’une

fonction, constituée de la séquence des signes indiquant si une fonction est croissante ou

constante (signe +), ou bien décroissante (signe �). Si la fonction résulte de la

moyennisation d’observations successives entachées d’erreurs, le signe de monotonie

est une variable aléatoire binaire, dont nous étudions la loi de probabilité sous deux

hypothèses de distribution des erreurs : uniforme et gaussienne. Nous décrivons ensuite

un test statistique simple permettant de comparer les signatures de monotonie de deux

fonctions (par exemple, l’une observée et l’autre servant de référence) et nous l’appliquons

à quatre exemples de fonctions, issues de la génétique, de la psychologie, de la

gérontologie et de la morphogenèse.

� 2015 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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reference sequence. We will restrict the present study to
the case where one cannot observe the same biological
object at different times or locations on a one-dimensional
scale, because it is experimentally destroyed, censored or
individually hidden by a double blind procedure. Hence, it
is observed a series of empirical distributions and the
monotony intervals, bounded by observation times. The
support of the empirical distributions is an interval in the
uniform case and an estimate of the 95%-confidence
interval in the Gaussian case.

A test will be built under the assumption of indepen-
dence of the components and increments of the observed
variables at the observation times which constitute the
frontiers of the monotony intervals and we will present
typical examples in four application domains: one will focus
on the comparison of intervals of monotony of histograms
corresponding to the observation of physiological events
(crossing-overs), observed for men and women and
compared on a single human chromosome. The second
example concerns the answers of a group of individuals
during double blinded exercises of choice of an image
among a pair of images, along a succession of image pairs
presented successively. The third example is related to the
evolution during the nychthemeron (day/night 24 h inter-
val) of the number of entrances in a given room, observed for
different rooms and successive 25 days. The final example
concerns microscopic data about segregation and transport
of colloidal particles during microtubule morphogenesis,
phenomena compared with and without gravity.

The former biomedical methodologies concerning
monotony comparison are essentially coming from the
LD50 toxicological bioassays, in which there is no
individual horizontal sampling because the animals tested
are not reused (because death or pathologic—even minor—
reaction) after each dose administration. These bioassays
produce data susceptible to benefit from a monotony
signature testing, notably in their sequential version, in
which the experimental procedure consists in choosing
increasing toxic doses d1,. . .,dn, giving lethal effects
X1,. . .,Xn (measured by the percentage of death) based on
former experiments done on a known reference drug of the
same chemical family giving lethal effects Y1,. . .,Yn,
procedure called prediction and based on reference
chemicals testing [1]. X1,. . .,Xn and Y1,. . .,Yn are considered
as random variables observed at the same times.

The first attempt to compare the monotony intervals
has been to use the rank statistics correlation test
[2,3]. More precisely, if r(X) denotes the decreasing rank
statistics of X, we have for the sign of the ith monotony
interval of X, denoted sgnXi:

8 I ¼ 1; . . .; n�1; sgnXi ¼ 1I r Xð Þi < r Xð Þiþ1f g�1I r Xð Þi > r Xð Þiþ1f g:

Hence, we have:

sgnX ¼ sf g ¼ \ i¼1;...;n�1 Xi� si�1ð Þ=2 < Xiþ siþ1ð Þ=2

� �
and P sgnX ¼ sf gð Þ

¼ P \ i¼1;...;n�1 Xi� si�1ð Þ=2 < Xiþ siþ1ð Þ=2

� �� �

¼
Z

. . .

Z
f jð Þdj

(1)

where f is the joint distribution function of X and A sð Þ ¼
\ i¼1;...n�1 j; ji� si�1ð Þ=2 < jiþ siþ1ð Þ=2

n o

Let us suppose that X is a random vector withindependent
components and increments; then (1) becomes (2):

P sgnX ¼ sf gð Þ ¼
Y

i¼1;...;n�1
P Xi� si�1ð Þ=2 < Xiþ siþ1ð Þ=2ð Þ
� �� �

¼
Z

. . .

Z
A sð Þ

Y
i¼1;...;n�1

f iþ siþ1ð Þ=2 jið Þ

Fi� si�1ð Þ=2 jið Þ ¼
Y

i¼1;...;n�1

Z
S f ið Þ

f i jið Þ

1 þ sgnXið Þ=2�sgnXiFiþ1 jið Þ½ �dji

(2)

where fi (resp. Fi) is the distribution (resp. Cumulative
distribution) function of Xi, and S(fi) denotes its support.

For example, if sgnX = (�1,. . .,�1), then we have:
P({sgnX = (–1,. . .,–1)}) = P(\i = 1,. . .,n–1{Xi + 1 –

Xi< 0}) = Pi = 1,. . .,n–1 P({Xi + 1< Xi}) = Pi = 1,. . .,n–1 P([ji2S(fi)

({Xi = ji}\{Xi + 1< ji})) = Pi = 1,. . .,n–1 RS(fi) fi(ji)Fi + 1(ji) dji.
The formulas above show that the knowledge about the

rank statistics r(X) gives the monotony signature sgnX, but
that the converse is false. Then, an identity test between
sgnX and sgnY is possible when the monotony intervals are
observed, even if the rank statistics remain unknown. We
will build such a test in the following.

2. Stochastic monotony signature: definition and study
of the distribution

2.1. Definitions

Let us consider the graphs of real functions of time, X(t)
and Y(t), recorded at the same observation instants
belonging to the discrete time set {t1,. . .tn}� given in
Fig. 1. We suppose that the studied phenomenon involves in

Fig. 1. (Color online.) Temporal profiles of an observed signal X (red) and a

reference signal Y (blue) over time t, indicating monotony segments

between the successive averages of X, each average being the centre of the

empirical 95% confidence interval of a distribution of errors on X

supposed to be symmetrical. If it is supposed to be uniform, the weighted

monotony signature of X is equal to (0.4,1,0,0,1,1,0,0,1). Monotony

intervals circled in orange correspond to the difference between X and Y
monotonies.
A sð Þ
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eral the censoring of the observed system (individual,
, chromosome. . .) by loss, death, destruction. . . Hence, we
y get from the experiments the empirical distribution of
 data recorded on a sample of individuals different at each
e (like in the LD50 experiments). We call monotony
ature of X (resp. Y) the sequence of the values ‘‘+1’’ and
’’ corresponding to their successive monotony intervals:
Xi = +1 (resp. �1) corresponds to the increase or
stancy (resp. decrease) of the function X on its ith
notony interval, and the monotony signature of
resp. Y) for nine successive intervals of monotony in

 1 equals:
nXi}i = 1,9 = (+1,�1,+1,+1,�1,�1,+1,+1,�1) (resp. {sgnYi}i =

 (�1,�1,+1,+1,+1,�1,+1,+1,�1).
We can decide that the monotony signature of the
erved X profile is significantly different from the Y

rence profile (Fig. 1), after testing the similarity of these
atures due to a common causality between X and Y

pothesis H1) against a random choice of the values of the
cessive sgnXi’s (hypothesis H0), by using, when

iY = �1, the probability P_i decreasing from a value taken
the support in (denoted above S(fi)) of the distribution
f Xi to a value of Xi + 1 on S(fi + 1) (cf. Fig. 2 for i = 1):

¼ P Xiþ1 < Xif gð Þ ¼ P [ j 2 S f ið Þ Xi ¼ jf g\ Xiþ1 < jf gð Þ
� �

¼
Z

s f ið Þfi jð ÞFiþ1 jð Þdj

(3)

ere Fi+1 is the cumulative distribution function of Xi + 1.
The sequence of the probabilities {P_i}i = 1,. . .,n–1 of decay

 on its ith monotony interval is called the weighted
notony signature of X.

 Gaussian errors

Proposition 1 In the Gaussian case, where the
ribution of Xi is N(xi,si), we have:

¼
Z 1

0
exp � gi zð Þ�bð Þ2 þ a2g zð Þ2

� �
=2a2

h i
=a dz (4)

where a = si/si+1, b = (xi–xi+1)/si + 1 and gi = Fi
�1.

Proof 1 If the density distribution of errors is Gaussian,
the formula (3) becomes (by neglecting the index i):

P_ = RIR f(j) F(aj + b) dj,
where f (resp. F) is the distribution (resp. cumulative

distribution) function of the standard Gaussian law N(0,1),
a = s1/s2 and b = (m1 – m2)/s2. By changing the integration
variable j in z = F(ax + b), we have:

dz = af(aj + b) dj and j = (g(z) – b)/a,
where g = F�1. Then we can write P_ under the following

formula:

P ¼
Z 1

0
f g zð Þ�bð Þ=að Þ=af g zð Þð Þ½ �dz

¼
Z 1

0
exp � g zð Þ�bð Þ2 þ a2g zð Þ2

� �
=2a2

h i
=a dz

¼
Z 1

0
exp b 2g zð Þ�bð Þð Þ=2ð Þdz if a ¼ 1

Because the cumulative distribution functions of the
uniform law on [–2s, 2s] and of the Gaussian law N(0,s)
are very close (cf. Fig. 3, right), the results concerning the
calculations of P_ are similar. Then, in any case of errors, we
have chosen uniformly 100 couples of values
(xi,xi + 1)i = 1,. . .,100 in [0,10]2. Then, we simulated 100 sam-
ples of 100 couples of values (jik,j(i + 1)k)k = 1,. . .,100 by using
100 couples of Gaussian distributions {N(xi,1),
N(xi + 1,1)}i = 1,. . .,100, and we calculated the difference Di

between the probability P_i calculated from the integral
formula (1) and the empirical frequency P_i* obtained from
the observation of the events {jik> j (i + 1)k}k = 1,. . .,100. The
result is given in Fig. 3 (left), showing as expected that the
empirical distribution fD* of the random variable Di = P_i –
P_i* is asymptotically (in sample size) Gaussian N(0,1).

2.3. Uniform errors

Proposition 2 In the uniform case, let denote by [0,d]
(resp. [D1,D2]) and x1 (resp. x2) the interval and the mean of
the uniform law of X1 (resp. X2). Then, there are six
different configurations (cf. Fig. 4):

1) D1< 0 � d � D2, then P_ = [(d – D1)2 – D1
2]/2dD = d/

2D – D1/D I
2) D1< 0 � D2< d, then P_ = 1 – D2

2/2dD II
3Þ D2 � d � D1 � 0; then P ¼ ðd-D1Þ2=2dD III (5)

4) 0 � D1� D2< d, then P_ = 1-(D2
2-D1

2)/2dD = (2d-
(D2 + D1))/2d IV

5) D1> d, then P_ = 0 V
6) D2< 0, then P_ = 1 VI
Proof 2 In the uniform case, the formula (3) becomes:

P ¼
Z inf d;D2ð Þ

sup 0;D1ð Þ
f jð ÞF jð Þdj;

Hence, we have:
inf(d,D2)

If D2� d; P ¼
Z inf d;D2ð Þ

sup 0;D1ð Þ
j�D1ð Þdj=dD

inf(d,D2)

If D2 < d; P ¼ 1�
Z inf d;D2ð Þ

sup 0;D1ð Þ
dj=dD

2. (Color online.) Calculation of the probability P_ of negative

otony, where [0,d] (resp. [D1,D2]) and x1 (resp. X2) denote the interval

 the mean of the uniform law of X1 (resp. X2).
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Then, by considering all the possibilities of values of the
extrema inf(d,D2) and sup(0,D1), we get the six different
formulas (5) (cf. Fig. 4) &

3. A statistical test of monotony

We will suppose in the following that the distribution
function of Xi is uniform on [ai1,ai2] and that X is a
stochastic process with independent components and
increments. In Fig. 1, the probability P_ of decay of X is
equal to 0.4 for the first interval of monotony and 1 for
the fifth (both circled in orange). P_ equals also 1 for the
second, sixth and ninth intervals, and 0 for the third,
fourth, seventh and eighth ones. Let us denote by P(h)
the probability of having h differences between the signs
of monotony of observed X(t) and reference Y(t) signals.
We call H0 the hypothesis saying that monotony
signatures of X and Y are similar by chance with
independency between X and Y, the probabilistic
structure being defined by the empirical estimates of
their distributions and the independency of the compo-
nents and increments of X.

Then, if h = 2, the probability P(2) under the hypothesis
H0 equals:

Pð2Þ ¼ Si;j ¼ 1;9P 6¼ iP 6¼ jPðf 8 k 2 fi;jg; sgnXk

6¼ sgnYk; 8 k =2 fi;jg; sgnXk ¼ sgnYkgÞ
(6)

where P6¼i is the probability that the monotonies of X and Y

are different on the ith interval:

� in the case where sgnY is deterministic, P6¼i = P_i if
sgnYi = +1 and P6¼i = 1–P_i if sgnYi = –1;
� in the case where sgnY is random and independent of

sgnX: P6¼i = P_i(X)(1–P_i(Y)) + (1–P_i(X))P_i(Y), where
P_i(X) denotes the probability that X decreases on its
ith monotony interval.

In the case of Fig. 1, we have, by supposing the
successive monotony signs of Y known with a certainty of
3/4:

Pð2Þ ¼ ð0:4 � 0:75 þ 0:6 � 0:25Þð1 � 0:75 þ 0Þð0:75Þ7	 0:045

(7)

We can therefore consider that the probability of
rejecting falsely the hypothesis that monotony similarity,
except for h = 2 intervals, is due to chance with indepen-
dency between X and Y is less than 5%. This test is not as
powerful as a correlation test, but it is interesting in the
case of a low number of longitudinal observations in which
signal amplitude is not pertinent compared to monotony,
when the variance of the empirical correlation with a
reference signal is important. Easy calculations above
require that reference Y and observed signal X are known at
the same instants of observation and random process X(t)
has independent components and increments. The cause of
rejecting the hypothesis of similarity with independency
between X and Y is the presence of a link between
successive values of the observed and reference signals.

4. Biomedical applications

We will give in the following simple illustrative
examples where monotony signature is pertinent.

4.1. Genetic events localization

Fig. 5 below gives the localization X (resp. Y) of the
physiologic crossing-overs along chromosome 3 for human
females, with the blue curve in Fig. 5 (resp. males, with red
bars) [4]. By comparing the two monotony signatures as
given, we reject the hypothesis that female and male

Fig. 3. (Color online.) Left: empirical distribution fD* of the random variable D = P_–P_*, asymptotically (in sample size) Gaussian N(0,1) (red curve). Right:

theoretical cumulative function F of the uniform (blue) and Gaussian (red) distributions of errors.

Fig. 4. (Color online.) The six different configurations of X1 and X2

supports in the case of the uniform distributions of errors.
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ssing-overs have similar localization by chance with
ependency between X and Y (P < 10�7), which is in
or of the existence of the same frailty domains along the
le and female chromosome, explaining the frequency of
ssing-over co-occurrences.

 Individual choices and collective consciousness

During successive sessions of choice, participants
onging to a defined group are choosing one picture from
‘absurd questionnaire’’ consisting of 50 pairs of pictures,
ach of which one picture has to be chosen [5]. The results
en in Fig. 6 are used to search for evidence in favor of the
uence of group dynamics on individual choices of the
tures proposed in the questionnaire. The swaps between

the two pictures of a pair, measured for each pair of pictures
between the initial choice (called A choice) across sessions
could be interpreted as a manifestation of group dynamics:
for instance, the ‘‘honeymoon’’ (dependence on the leader)
and the successive ‘‘fight-flight’’ (reaction against the
dependence on the leader) attitudes could be represented
by a greater number of group dynamics swaps (further away
from pure randomness). It seems intuitive that an increase
of simultaneous swaps could be linked to an increased group
activity or group dynamics event. Statistics carried out on
the totality of swaps A!B or B!A evidenced a significant
increase in the swap numbers between S01/S02 and S02/S03
session transitions, and between S03/S04 and S04/S05
session transitions, incompatible with a random fluctuation.
In other words, the number of changes in choices increased

5. (Color online.) Crossing-over numbers N (male red bars and female blue curve) along the human chromosome 3 (12/63 monotonic discrepancies

rcled by orange ellipses).

6. (Color online.) Group dynamics-driven swaps from picture A to B and from picture B to A, occurring over time between 11 consecutive sessions for

 of 50 pairs of pictures, for the two types of swaps (A to B and B to A). We see inside orange ellipses the localization of discrepancies between the
otony of the curves relative to A!B and B!A swap numbers.
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significantly between the 1st and the 3rd sessions, and then
remained essentially constant until the end of the training,
except between the 3rd and the 5th sessions. During session
S04, the number X of A!B swaps and Y of B!A swaps
showed similar fluctuations close to significance against
similarity obtained by chance with independency between
X and Y (P = 0.6), while there is no significant change in the
evolution of the sum X + Y. This is consistent with the
existence of a collective unconscious behavior.

4.3. Actimetry

After 25 days of observation of a person at home [6–8],
we get the results given in Fig. 7 corresponding to his/her
staying in the different rooms of a smart flat in which

different sensors recorded his/her activity at home. They
allow us to calculate different temporal profiles assigning
the observed person in different clusters corresponding to
a normal or a pathologic behavior. Alarms can be triggered
when passing from a normal type of nychthemeral activity
to a pathologic one. For example, in a degenerative neural
pathology like Alzheimer’s disease, we can observe an
abnormal activity in the same room, called perseveration,
which is a pathologic repetition of actions in general
already successful (‘‘errare humanum est, perseverare
diabolicum’’) [9]. We model this phenomenon of persis-
tence in a pathologic activity by setting atypical extended
occupancy periods in a room or by performing repetitively
a specific daily routine, in comparison to more standard
scenarios encountered in everyday life.

A way to compare different temporal evolutions of
room occupancies is to follow the evolution in time of the
number of events of entrance in room, for different rooms
and 25 successive days. The fluidity of the activity can be
related to the number of entrances in connected rooms like
the bedroom and the toilets, because a decorrelation
between these numbers could sign a stereotyped activity
by repeating for example pathological entrances in the
toilets or non-entrances from the bedroom (e.g., in case of
anuria, nocturia, or pollakiuria). The data in Fig. 7 show
that only three discrepancies within a period of 25 days
allow us to reject a similarity between entrance activities
No. 3 and No. 4 by chance, with independency of these
activities (P = 2 � 10�7), the same monotony signature for
connected rooms being then the sign of a normal behavior.

4.4. Microtubule morphogenesis

In [9,10], the authors recall that weightlessness is
known to affect cellular functions by as yet undetermined
processes, but with a role of the cytoskeleton and

Fig. 7. (Color online.) Evolution during the nychthemeron (day/night 24-

h interval) of the number of entrances in room, for different rooms, during

25 successive days. We see in orange the localization of the monotony

dissimilarities between curves No. 3 (number of entrances in bedroom)

and No. 4 (number of entrances in the toilets).

Fig. 8. (Color online.) Evolution during 60 s of the observed number of beads in the cell preparation, showing 4/30 discrepancies (orange ellipses) between
the bead numbers observed under a gravity field (1G for the red curves) and in the absence of gravity (black and blue curves).
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rotubules, which behave as a complex system that self-
anizes by a combination of reaction, diffusion, collec-

 transport and self-organization of any present
oidal particles [9]. This self-organization does not
ur when samples are exposed to a brief early period of
ightlessness [10]. During both space-flight and ground-
ed (clino-rotation) experiments on the effect of
ightlessness on the transport and segregation of
oidal particles, a significant difference between the

ocity of colloidal particle beads has been observed
. 8), as well as the rejection of the similarity by chance
h independency between gravity and non-gravity
notony signatures during the evolution of the microtu-
e organization in embryonic cells (P = 3 � 10�5). This
gests, depending on factors such as cell and embryo
pes, that major biological functions associated with
rotubule-driven particle transport and self-organiza-

 might be strongly perturbed in velocity amplitude, but
 in sequencing, by weightlessness.

onclusion

The stochastic signature of monotony and the associat-
statistical test of similarity of monotony allow us to
nage situations in which two signals have to be

pared, not in amplitude, but only through the
cession of their monotony intervals. Numerous situ-
ns in which this approach can be used exist in biology,

 we have selected four cases in biomedicine, in which
 present tool seems to be pertinent.
If there exists an empirical correlation between two
cessive increments, then the test must be done with a
rence signature provided with this correlation struc-

e estimated from the empirical law. It is the case if the
cess is observed through a longitudinal sampling of
ividual histories, even if the process has independent
ponents. More, if the components are not indepen-

t, but if it is possible to calculate the joint empirical
ribution of the signs of monotony signature for each
ividual history, provided it makes sense at the
ervation level (time sampling allowing the estimation
he non-Markovian dependence of the increments), and

if we know the distribution of the reference signature, then
the test to be used is an identity test between reference and
empirical distributions. This situation will be studied in a
future article.

Disclosure of interest

The authors declare that they have no competing
interest.

Acknowledgements

We are very indebted to Yannick Kergosien for his
helpful suggestions and exciting discussions.

References

[1] H. Spielmann, E. Genschow, M. Liebsch, W. Halle, Determination of the
starting dose for acute oral toxicity (LD50) testing in the up and down
procedure (UDP) from cytotoxicity data, ATLA Altern. Lab. Anim. 27
(1999) 957–966.

[2] M.G. Kendall, Rank Correlation Methods, Griffin, London, 1970.
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